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Abstract 

In this paper we define a notion of regularity for functions of one and several biquaternionic 
variables. As a special case we obtain the notion of regularity given by Imaeda (1976) that gives 
rise to Maxwell’s equations. We investigate algebraic and analytic properties of these functions and 
discuss their physical interpretations. 
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1. Introduction 

This paper was stimulated by an idea of Imaeda [ 121 concerning an alternative formulation 
of electrodynamics based on the study of regular functions of real biquaternionic variables. 
In his paper Imaeda manipulates the classical Cauchy-Fueter system, obtains a new notion 
of regularity and shows its relations with Maxwell’s equations. He obtains several classical 
results as a consequence of his regularity condition (e.g. the retarded potential formula and 
the field generated by a moving charge). In this paper we reformulate his approach in a 
larger framework, using a new and very natural operator which we introduce in Section 3. 
This operator allows us to deduce Maxwell’s equations and to study their behavior in two 
Minkowski space-times, one with electric charges and the other with magnetic monopoles. 
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Our model, in particular, predicts the lack of wave propagation from one Minkowski space- 
time to the other, so that the presence of magnetic monopoles in the Minkowski space-time 
Km is not contradictory to physical reality in the Minkowski space-time Ke. 

From a mathematical point of view, our work is strongly influenced by our earlier suc- 
cesses with the algebraic treatment of the Cauchy-Fueter system (see, [ 1.2,4] also [5]). 
In the present paper we compute the Ext-modules associated with our new operator and 
provide a physical interpretation for them. In addition, we are able to construct a new hy- 
perfunction theory which can be physically interpreted as a way of describing the behavior 
of an electromagnetic field as it propagates through a nonlinear material. 

After a preliminary section in which the algebra BW of biquaternions is defined, we 
introduce a new operator and the corresponding regularity conditions. Section 4 is devoted 
to the algebraic study of this and related operators, and to the analytic consequences of 
our results. In Section 5 we study the analysis of regular functions which is crucial for the 
construction of regular hyperfunctions in Section 7. In Section 6, on the other hand, we 
provide the physical interpretation for the new operator and regular functions. 

2. Preliminaries 

In this section we define the algebra lE%W of biquaternions and discuss its elementary 
algebraic properties. The associative complex algebra of biquaternions BW is defined as the 
complex algebra generated over the basis {eu, et, e2, e3) where eu = 1 and ek, k = 1, 2. 3, 
satisfy the following Pauli-type algebraic relations 

ei=l, k=1,2,3, eyei=-ejec=iek, i=&iEC 

with 1, j, k being any cyclic permutation of 1, 2, 3. The relations among the units ek, k = 
1. 2. 3, are the same as the ones among the Pauli matrices 

According to these definitions, a biquaternion Z is an element 

Z = e0z0 + elzl + e222 + em, 

where zLL are complex numbers written as zcL = xfi + ryl*, ,LL = 0. 1, 2. 3. We write a 
biquaternion as 

Z = x0 + x + iyu + iy 

with x = elxl + e2x2 + e3x3 and y = etyt + e2y2 + e3ys. We can define the so-called 
hyperconjugate Z+ 

Z+ = x0 - x + ipo - iy. (2.1) 

We say that a biquaternion X is real if it has zero imaginary part, i.e. X = xu + x. The 
subset of real biquaternions is denoted by RW and is called (see [ 121) “real biquaternion 



space”. Every biquaternion Z in BW can be written as Z = X + ix’, with X. X’ E [WW. 
The norm of a biquaternion Z, defined as 

N(Z) = z+z = zz+ = z; - zf - z; - zf. (2.2) 

is, in general, a complex number. This norm becomes real if and only if the components 
(.ru. ~1, .x2. ~3) and (~0, ~1, ~2. ~3) of X andX’areorthogonal with respect to theMinkowski 
space-time inner product, i.e. (X. K,~~,X’) = 0, where xIL,, = diag( 1, - 1. - l( - 1). When 
we restrict our attention to a real biquaternion X, we have N(X) = .Y: - ,Y: - .x2_ - 
..v.: E [w and, as Imaeda points out in [ 121, the metric space structure of the space of real 
biquaternions is equal to that of a Minkowski space. When the norm N(Z) of Z is zero, 
but Z # 0, we say that Z is a zero divisor. It is important to note that the biquaternion 
algebra, unlike the real quaternion algebra, is not a division algebra because of the existence 
of zero divisors. Given a biquaternion Z such that N(Z) # 0 we can define its inverse 
as 

z-1 =z+ 
N(Z) 

The set BH, considered as a ring, contains the ring W of quaternions, as a subring. A 
quaternion 4 is written in this case as q = eO,xO + ielyt + ie?yz + ie34.3, where the units 
e,, . p = 0, 1. 2, 3, are related to the units of W by 

iel = i, iez = j. iej = k. (2.3) 

The set of units (eu, i, j. k} forms a basis of W and satisfies the following multiplication 
relations (note the difference in sign from the usual quaternionic variables): 

ji = -ij = k, jk=-ki=j, kj = -kj = i. 

We are aware that this notation differs from the standard one. In fact, it is possible to relate 
the units e,, with the units of W in many ways. However, we decided to use this particular 
choice for two reasons. First, it follows Imaeda’s [ 121: second, this particular choice allows 
us to obtain the traditional Cauchy-Fueter system directly from our matrix. 

We note that BW is isomorphic, as a C-vector space, to W @w C, the complexified 
quaternions. 

3. Regularity conditions 

It is well known that it is possible to define a notion of (left) regularity for functions 
f : U c W -+ W of class C’. Regular functions are defined as the kernel of the Cauchy- 
Fueter operator 

a -= 
aq 

&+i&+jc+k&. 
‘2 , 

(3.1) 
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In [ 121 a similar condition is given to characterize regular functions of a real biquaternion 
variable. In order to do so, Imaeda formally replaces _vk by -iXk in (3. 1) to obtain the 
operator 

D=&C!&-e&-e&. (3.2) 
0 I 2 

A function F : RW -+ IEEW, 

F(X) = $(u~(+) + ibv(xp))ev, 
v=o 

where a, (x,), b, (x,) are real-valued functions, is said to be (left) D-regular if it is of class 
C’ and satisfies 

DF(X) = 0. (3.3) 

If we put (uu, a) = (a~. al. a~, ag) and (bo, b) = (bo, bl, b2, b3), the regularity condition 
in vector notation can be written as 

a 
-uu - diva = 0, 
ax0 

$bo - div b = 0. 
0 

La - grad ao + curl b = 0, $b - grad bo - curl a = 0. 
(3.4) 

ax0 0 

This system represents Maxwell’s equations (see [ 121) if the vectors a and b represent the 
magnetic and the electric fields, respectively; ho is related to the electric density charge 
p”(X) and to the electric current density Je by the relations p”(X) = a/axobo, Je = 
-grad ho. Moreover, we assume that the scalar a() is a constant to avoid the existence of 
magnetic monopoles. 

If we think of F(X) as an g-vector, we can write system (3.3) in the following matrix 
form: 

a,,, -a,, -axI 
-a,, a,, 0 
-a.r2 0 a.,, 
-4, 0 0 
0. 0 0 

0 0 a,, 
0 -a,, 0. 
0 ax2 4, 

-a.,, 0 0 0 0 

0 0 0 -a.,, a,, 

0 0 hi 0 -a,, 
a -Q 0 -a,, a,, 0 

0 h,, -a.,T -i3,, -hi 
-a,, -a,, a,, 0 0 

a _ -h, 0 ho 0 x I 
- 0 -a,, 0 0 a,, 

In the sequel it will be useful to write the matrix associated to system (3.5) as follows: 

Mu = _Ac :‘ , [ 1 
(3.6) 



where 

A 

and 
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a 

-2, 

4, -ax, _ 4, 

4’ a,x, 0 0 = 

-3q o &, o 
-ax3 o o a,,, 1 

ro 0 0 0-j 

We now want to extend the operator defined by the 8 x 8 matrix MD to an operator acting 
not only on functions of a real biquaternion variable, but on functions F : BW --+ BW 
defined on all MU. 

We now define the operator 

(3.7) 

where 

a a a -= -_i-, 
a+ ax, a4(@ 

/_~=0,1,2,3 

and Z+ is defined in (2.1). In view of the above considerations it is clear that 7 is a 
generalization of the Cauchy-Riemann operator a/X? for functions of one complex variable 
or (as explained above) of the Cauchy-Fueter operator a/a?. 

Where the more explicit notation iI/aZ+ is needed, we will use it instead of ‘7. 

Definition 3.1. A function F : CJ g LEWK -+ EIW of class C’ on the open set U is said to 
be left I-regular if 

IF=0 

and right I-regular if 

F;r=O, 

where F7 = 0 is defined by 

3 aF 
F7=~-~-ej=o’ 

j=, azj 
It is important to verify that the matrix MI associated to operator 7 is 

(3.8) 
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where 

a.,,, -3, , -a,, - a.y3 

PzP’= -a.,, a.,,, hi -a!., 
-ax2 -a?., 3,,l a,, 
-a,, a,.? -a!., a.,,, 1 

and 

Q = 

[ 

a,,, -a,, -aV, -a?,, - 
I;J:, 2 ,;“; :;2 , 

?? .x3 ?O .x I 
-aT3 -a.r2 a,, a,.,, I 

and its Fourier transform is the matrix 

Remark 3.2. 
Both Maxwell’s equations and the Cauchy-Fueter equations are now particular cases of 

7F = 0 when we restrict the domain and/or the range of the function F. Indeed, if we 
consider F : LW -+ 5W, the operator 7 characterizes D-regular functions, and hence 
leads to Maxwell’s equations, while, if we consider F : W c EIW + W c BW we obtain 
the usual quaternionic regular functions and hence the Cauchy-Fueter equations. Another 
interesting feature of the operator 7 is that it also contains the conditions of regularity for 
functions of two quaternionic variables. In fact, we can split a biquaternion as the sum of 
two quaternions Z = q + iq’, where q = xg + iyl + jy2 + kJ3, q’ = ~0 - in1 - jx2 - kq 
and we can think of a function F defined on EEW as F = F(q, q’). If we consider a function 
F : BE-! - W, where F = FO + iF1 + jF2 + kF3, and impose I.?= = 0, we will obtain 
the system 

which corresponds to the Cauchy-Fueter system for functions of two quaternionic variables. 

4. Algebraic results 

In this section we discuss the algebraic properties of the operators D, 7 and some of their 
variations with the methods which we have introduced in our previous papers [ 1,2,4]. The 
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idea is to use such methods to study compact and pointwise singularities for such systems, 
as well as to build a new version of the hyperfunctions theory which has some interesting 
interpretations in terms of electromagnetic fields. As we have shown in [l] (and related 
papers), a great amount of analytical information is contained in the complex of syzygies 
of the module associated to the system, and therefore we will begin this section with its 
study. 

Throughout this section, A will be either the ring A = R[xu. XI, x2, x3, yo. ~1. ~2, _vj] 
of polynomials in the eight real variables x0. ~ ~3 or the ring A = R[xc. x1, x2, x3] of 
polynomials in the real variables x0. , x3. The context will make it clear to the reader 
which case is being used. 

Our first goal will be to compute the Ext-modules associated to the module M generated 
by the matrix &IT, i.e. 

It is possible to compute, using COCOA, the syzygy module ’ of the columns of the ma- 
trix &I,. This syzygy module is equal to zero, i.e. Ext’(M. A) = 0, which implies, (see 
[ 13,15]), the unique continuation property for the solutions of the system IF = 0. We n 
now show that Ext’(M, A) # 0. Since the matrix MI has maximal rank and is square, 
Ext’(M. A) = 0 if and only if the determinant of fil is 1, see [l]. The determinant of n 
Ml can be computed to be 

f = [(N(X) - N(X’))’ $4(X, gklVx’)2]2 = ]N(z)2j* 

from which we conclude that Ext’ (M, A) # 0. This result, while not surprising (a similar 
phenomenon occurs in the complex and quaternionic cases), can be given the analytic inter- 
pretation that I-regular functions can have compact singularities (see [ 151). We will show 
later how this result can be modified. In view of Palamodov’s results on the characteristic 
varieties of the Ext-modules, it is important for us to determine the characteristic variety of 
Ext’ (M, A). In the case in hand, we can use the following general result. 

Theorem 4.1. Let A.’ 1 A’/ be a linear trunsformatiot~, where q > s, with A of maximal 
tank .F and let M = AqIAA,‘. Then the churucteristic variety of Ext’(M. A), us a set, is 
the variety defined by the greutest common divisor d of all the s x s minors of A. 

Proof: First, it is well known that Ext’(M, A) is the torsion submodule N of Aq/AAS. 
Let 

F,K’Fo+N+O 

be a free resolution of this module. The characteristic variety of N is defined by the ideal 
Fa generated by the maximal minors of K. This ideal is also known as the 0th Fitting ideal 

’ The algorithm for the computation of the syzygy module is based on the theory of Grijbner bases (see 
[3]). Once the ring A and the module M are defined in COCOA, the command Syz(M) gives the syzygies 
OfM. 
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t& of N. It is also well known (see, for example, [lo]) that for some n, 

(arm(N))” C &J C arm(N), 

where arm(N) C A denotes the annihilator of N. Therefore, the varieties defined by arm(N) 
and by GO are the same as sets. We claim that the only prime ideals above arm(N) are the 
ideals generated by prime divisors of d. Indeed, if d $ P, P a prime ideal, then the map 

still has maximal rank, where Ap denotes the localization of A at P. But in this situation, 
the gcd of the s x s minors is 1 (since d in Ap is invertible). So A:/AA$ has no torsion 
elements (see [I]). So P cannot be above the annihilator of N and hence, as a set, the 
characteristic variety is defined by d. 0 

We now apply this result to the system M;r to obtain that the characteristic variety of 
Ext’ (M, A) for MI is the variety defined by the polynomial f above (this could have been 
easily computed in this case without Theorem 4.1, since the syzygy module of fit7 is zero, 
so Ext’ (M, A) 2 Aq/fikA’). The full power of Theorem 4.1 will be used later. 

If we consider the matrix Mu, then again it is easy to compute that Ext’(M, A) # 0, 
and the characteristic variety is defined by the polynomial 

g ZZ (xi -x: - x; - x;)~ = N(X)4, 

i.e. the characteristic variety is, geometrically, the light cone in the dual space. We will see 
in the sequel how this result can be utilized. 

The fact that Ext’ (M, A) # 0 means that the system is not overdetermined and, therefore, 
compact singularities cannot be eliminated. Given the physical meaning of the system 
MD, the possible existence of compact singularities may be interpreted as the presence of 
localized charges which generate the electromagnetic field. One may be tempted to change 
this situation by looking for special situations in which the field a and b are proportional 
(plane waves), or even a = b (as will be shown in Section 5, one can interpret a as the 
magnetic field and b as the electric field). This suggests the study of a new system 

(A + C)a = 0, (A - C)a = 0 

associated to an 8 x 4 matrix whose Fourier transform is 

X0 

-X1 

-x2 

-X3 

X0 
-XI 

-x2 

-x3 

-XI -x2 -X3 

x0 -x3 x2 

X3 x0 -X1 

-x2 Xl x0 

-X1 -x2 -X3 

x0 X3 -x2 

-x3 x0 Xl 

x2 -x1 x0 
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On the basis of some earlier results [2], we might expect overdeterminacy but, in fact, a quick 
computation shows that, once again, Ext’ (M, A) # 0 (i.e. the gcd of the 4 x 4 minors is not 
1). Physically this may be interpreted by saying that, in the presence of an electromagnetic 
field, electric charges must exist. Once again, the obstruction to the vanishing of Ext’ (M, A) 
is given by the light cone and the characteristic variety is 

(X: N(X) = x; -x; - “22 - _X_; = 0). 

The fact that we have a complete description of the characteristic variety has a rather 
remarkable and suprising consequence. Indeed, we have the following result: 

Theorem 4.2. Let R be an open set in BW and let P E R. Then eveq I-re,gularfLmction 
on Q \ {P) whose components extend as distributions to all ofs2 is, indeed, a distribution 
solution to the system 7 on all 52. 

Proof? This result follows immediately from Corollary 8.14.4 in [15], in view of the fact 
that the characteristic variety of Ext’(M, A) is the light cone which is, obviously, non- 
hypoelliptic (see [ 151). 0 

Remark 4.3. Since the system 7 is not elliptic, distributions solutions are not necessarily 
I-regular functions (unlike what happens for the classical Cauchy-Fueter system). 

Remark 4.4. It is important to notice, once again, that this phenomenon is quite new, as 
one-point singularities do occur for regular functions (in the Cauchy-Riemann and Cauchy- 
Fueter sense) in one variable. 

Remark 4.5. A completely analogous result can be formulated for D-regular functions. 

We now turn our attention to what happens for functions of several biquatemionic vari- 
ables. For the sake of simplicity we will restrict our attention to the case of a function 
F : (EUd)” + IEW of two biquaternionic variables Z and W. In this case, we will say that 
F is I-regular if 

8F i)F 
-=-X0. 
az+ aw+ 

As we did in [I], we can use COCOA to compute the resolution of the module * associated 
to the 16 x 8 matrix which describes the above system. Without giving any computational 
details, we have the following theorem. 

Theorem 4.6. The module M associated to the system 

i3F aF 
- = 0, azf 

-=O 
aw+ 

* The algorithm for the computation of the resolution of a module is based on the theory of GrGbner bases 
(see [3]). Once the ring A and the module M are defined in COCOA, the command Res(M) gives the 
resolution of M, which is minimal if M is homogeneous. 



192 E Cdombo et al. /Journal of Geometv and Physics 26 (1998) 183-201 

admits a resolution of length 4 

0 --f A8 ---_, A’6 + Al6 ----f A8 --f 0. 

We also have 

Ext”(M. A) = Ext’(M. A) = Ext’(M, A) = 0. 

while Ext’(M, A) # 0. Therefore removability of compact singularities occurs. 

Here A is the ring of polynomials in 16 real variables, eight for each biquaternionic 
variable. 

5. Some properties of I-regular functions 

In this section we prove the extension of some classical theorems from the theory of 
holomorphic functions, to the case of I-regular functions. 

The set of left I-regular functions on an open set U C BW will be denoted by K?(U) 
while the set of right I-regular functions will be denoted by R;(U). If no confusion arises, 
we will omit the indices 1 or r. 

The following fact can be immediately verified and it is, in fact, a natural property shared 
by all “regular” functions in Clifford analysis. 

Proposition 5.1. R?(U) is a right H-U-module. 

Remark 5.2. It is well known that, in general, (see [ 1 S]), regular functions on a non-division 
algebra are not harmonic. In fact, in our case we have 

(5.1) 

which is an ultra-hyperbolic operator. We will see in the next section the physical meaning 
of this operator. 

Lemma 5.3 (Poincare lemma). Let U C BW be a convex open set, and let g : U + BW 
be a C30finction. Then there is f E C”(U) such that a/aZ+f’ = g on U. 

ProojI The computation of the syzygy module of the columns of the matrix 7 was done 
in Section 4, and shows that the matrix of the compatibility conditions g is the null matrix. 
Our result then follows from a standard result of Ehrenpreis [9]. 0 

We now introduce some differential forms aimed at the formulation of a Cauchy-type 
integral formula. Let 
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DZ = dz, A dz2 A dzj + el dzo A dz2 A dz3 + e2 dzo A dz3 A dzl 

+e3dzo A dzl A dzz, 

v = dzo A dz 1 A dz2 A dz3. 

193 

We have the following immediate generalization of the quatemionic case (see [ 19]), 

Proposition 5.4. d(g DZ f) = dg A DZ f - g DZ A df = ((g’T)f +g(lf)}u on BW. 

Corollary 5.5. rf f is left I-regular and g is right I-regulal; we obtain d(g DZ f) = 0. 

Corollary 5.6. A real difSerentiablefunction f is I-regular at the point Z if and only if 

DZr\df =0 

at the point Z. 

From this last property and Stokes’ theorem, we can obtain the Cauchy formula for 
‘T-regular functions. It is, first, necessary to introduce the following function: 

Z+ 
G(Z) = - 

N(Z)2 ’ 

where N(Z) is defined in (2.2). Note that G is the fundamental solution for a/aZ+, and 
easy calculations show that the following proposition holds. 

Proposition 5.7. G(Z) is left and right regular on BW \ (N(Z) = O}. 

Theorem 5.8 (Cauchy I). Let U c BW be an open set, and let C be a compact 3-chain, 
boundary of a 4-chain S in U. Then, ifg is right I-regular and f is left I-regular; then 

s 
gDZf =O. 

c 

Proofi Stokes’ theorem gives 

1gDZ.f =I d(gDZf)=O. 0 

c s 

It is known that, in general, the Cauchy formula holds without limitations in any real 
Clifford algebra. However in complexified Clifford algebras that are not division algebras, 
the Cauchy kernel at point P is not necessarily defined, and in our case, it is defined only 
outside the translated light cone, i.e. in BW \ [N(Z - Zp) = 0). Moreover, as pointed out 
in [7] (where some integral formulas in hypercomplex analysis are given), if a contour of 
integration C is homologically trivial in an open set R contained in a complexified Clifford 
algebra, it is not necessarily true that C is homologically equivalent to a sphere around P. 
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Let us indicate by CNp the set (Z E BW : N(Z - Zp) = O}, i.e. @Np is the light cone 
with vertex in P. 

Remark 5.9. Identifying EM with the space of 2 x 2 matrices with complex coefficients, we 
see that N(Z) is the determinant and therefore one can identify 5W \ CNc with GL(2, C). 
This has the homotopy type of the maximal compact subgroup I/ (2), and the nontrivial 
cohomology of this is z only in dimensions 0, 1. 3,4 (we are indebted to the anonymous 
referee for this remark). 

Following [7] it is possible to compute explicitly a generator for the group 

and so to characterize the cycles that can be used to write the Cauchy formula. 

Theorem 5.10. A generatorfor the group H3(BW \ CNp, 2T) 2 z is the sphere 

3 

Zp+Z:Z=*o+i’l+j?.?+kvjEW,x~+C’,Z=l . 
i=o 1 

ProojI Without loss of generality, we can assume that P = 0. Obviously, there exists an 
inclusion i : S” + BW \ CNo, so it suffices to show that the morphism 

i” : H3(S’, z) + H3(BW \ @No, z) 

induced by i is an isomorphism. Let us define the hypersurface S7 as 

s7 = z E BW: -&x: + yf) = 1 
i=O 

Let E = S7 n (BW \ CNo) and let p : E + S’ be the fibration 

Let us now consider Fu = p-’ (1). We have 

3 
F() = 

1 
z E m-u: 5(x: + y;, = 1, xu4’0 - =j$;vi = 0, 

i=o i=l 

(x0’ - y,‘) - &x: - yf) > 0 . 
i=l I 

We obtain the following inclusions: 
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To prove that i’ and i induce isomorphisms at the homology level can be done exactly as 
in [7]. In fact, E is a deformation retract of E8W \ CNu so i’* is an isomorphism, while the 
Wang sequence (see [14]) assures us that i* is an isomorphism. 

Finally it is easy to show that S” is a deformation retract of Pa. 0 

Definition 5.11. A domain 52 c 5W is said to be null-convex if for all 2, Z’ E Q such 
that N (Z - Z’) = 0, the whole segment ZZ’ belongs to R. 

Note that if Q is null-convex, then a cycle C can be deformed to a sphere around a point 
P near the cone @Np. 

Theorem 5.12 (Cauchy II). Let Q c EEW he a null-convex domain and .f’ E ‘R7(f2). If 
P E R, then 

,f(P)lndc(P) = & 
s 

G(Z - P) DZf(Z). 

c 

where C C R is any cycle homologous to the 3-sphere S’. 

Prmf: We prove the theorem in the case P = 0. It is obvious that the theorem holds for 
C = S”. In fact, it suffices to repeat the arguments given in [ 191 since S” is a sphere in W. 
In the general case, it suffices to use the fact that C - n&. 0 

To have a theory of I-regular functions that parallels one of regular functions of a 
quaternionic variable, it is also necessary to write Taylor series expansions for I-regular 
functions. We remark that the operator 7 can be decomposed into two operators as follows: 

where 

D_,-o.x := & - k ej J? 
j=, axi 

and D,,,y := 

In [ 121 a Taylor series is given for D-regular functions of a biquaternion variable. Let 

P,,(Z) = L c 
7z! likl....,~,,~3 

(a, + ek, 74) (zk,, + ek,,z0). 

where u = (n 1,112, ng) such that n 1 + 122 + 123 = n; the sum is taken over all different 
orderings of nt l’s, n2 2’s, rz3 3’s. Let us denote by o,~ the set of [nl, ~2, ni] such that 
n 1 + n2 + 113 = n. If f is a D-regular function, then 

F(Z) = f c a,P,(Z), a,, E mu. (5.2) 

Let us remark that P,.(Z) are not only D-regular, as Imaeda pointed out (i.e. D,,,,-regular, 
with our notation) but also Dy,,,y -regular because the x variables and v variables play a 
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symmetric role in the polynomials PV. So expansion (5.2) holds, not only for D-regular 
functions (with respect to the variables x or y), but also for I-regular functions. 

Remark 5.13. The expansion (5.2) implies that a regular function is a real infinitely dif- 
ferentiable function. 

6. Some physical comments 

The importance of quaternions and, more in general, of Clifford algebras in different 
fields of theoretical physics is well known. To have an overview of recent progress, we refer 
the reader, for example, to the references contained in [6] 

In this section we provide a possible physical interpretation of the kernel of the operator 7. 
If we explicitly write, in vector notation, the regularity condition IF = 0, we get the 

following system: 

$00 + Lhu - div, a - div, b = 0, 
0 34’0 

~CQ - &be - div, a + div, b = 0, 
aYo 0 

$a + Lb - grad, au - grad, bu + curl, b - curl, a = 0, 
0 aYo 

(6.1) 

&b - &a - grad, ho + grad, au - curl, a - curl, b = 0. 
0 _’ 

Let Ke and Km be Minkowski space-times with coordinates (x0, x) and (~0, y), respec- 
tively. The variables xu and JO represent the time coordinates while x and y represent the 
spatial variables. We assume that in Ke there are only electric monopoles and in Km there 
are only magnetic monopoles. If this holds, then the terms czu and bu depend only on some 
time and spatial variables, because 

a 
cue := pm(yO, y) is the magnetic monopole density in Km, 

,‘O 

--$hO := pe(xO. x) is the electric monopole density in Ke, 
0 

gradl. au := Jm(yo, y) is the magnetic current density in Km. 

grad, bo := Je(xo, x)is the electric current density in Ke. 

More precisely, we find that the functions 

a0 = UO(YO> Y)? bo = bo(xo, x) 

depend only on the variables indicated. This implies that 

$uo(ro; Y) = 0, &0(x0, x) = 0, 
0 aY0 

(6.2) 

grad, UO(YO, Y) = 0, gradv bo(xu, x) = 0. 
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We also require that the spaces Ke and Km be orthogonal with respect to the Minkowski 
metric g,,. In other words, we require that 

((X0> x)9 g/Lv(yo> Y)) = 0. 

Because of the symmetry of the problem, in Ke the fields a and b cannot depend on the 
variables (~0, y) while in Km they cannot depend on (~0, x). If we now replace (6.2) in 
system (6. l), we obtain two systems of Maxwell’s equations -one related to the Minkowski 
space-time Ke and the other to Km. If we set a := B and b := E, we obtain the usual 
Maxwell’s equations in Ke, while in Km we get 

pm(~u. y) - div,. B = 0, div, E = 0, 

-&B+curl,E=O, &I? - Jm - curl, B = 0, (6.4) 

which are Maxwell’s equations for magnetic monopoles only. We also have another natural 
way to split system (6.1). Let Ke and Km be the Minkowski space-times with the coor- 
dinate systems specified above. We consider now the mixed pairs of variables (x0, y) and 
(~0, x). We now suppose that we deal with a particular symmetric problem in which only 
the coordinates (x0, y) are considered while (~0, x) are neglected. In this way it is easy to 
derive the Cauchy-Fueter equations from system (6.1). We obtain the same result if we 
consider such a problem in (yn. x) coordinates neglecting (x0, y). 

We now note that the operator defined in (5.1) in the case of Maxwell’s equations becomes 

2 

A, - 5 in Ke 
a2 

and Ay - 2 in Km. 
0 @O 

These two D’Almbert operators imply that in Ke and Km, seen as separated spaces, it is 
possible to have wave propagation phenomena. 

The Cauchy-Fueter operator defined in (5.1) splits in the following Laplace operators: 

a2 a2 A,+~ and AY+;)x” inKeUKm’ 
. ‘0 0 

(6.6) 

whose solutions do not permit wave propagation from Ke and Km and vice versa. 
We can summarize the above considerations as follows: if we consider separately Ke and 

Km we obtain propagation phenomena, while if we consider an easy symmetric problem 
related to some coordinates in Ke U Km, we obtain that electromagnetic waves cannot 
propagate. 

Remark 6.1. Imaeda [ 121 deduces Maxwell’s equations by making an arbitrary substitution 
of variables in the Cauchy-Fueter system and gives no physical motivations. In addition 
to electric monopoles he also deduces the terms related to magnetic monopoles which he 
subsequently neglects. In this paper we give a natural way to derive Maxwell’s equations 
allowing the existence of magnetic monopoles, but proving that we cannot interact with 
them by electromagnetic fields. 
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7. The sheaf of I-regular hyperfunctions 

The theory of the so-called quaternionic hyperfunctions in one variable is now a suffi- 
ciently developed subject (see [ 11,16,17]). The main goal of this section is to show that it 
is possible to develop a similar theory and that this theory has physical interpretations. 

In this section, regulur will mean left regular. 
Let us start with the following obvious fact whose proof we leave to the reader. 

Proposition 7.1. Let I/ he any open set in MU. The ussignment U --+ ‘RD(U) is a sheqf 
~fright BW-modules. 

Now we prove two basic facts necessary to develop a notion of hyperfunction. The first 
result is the following. 

Proposition 7.2. Let 0 be a relatively compact set in an open set U c RW. Then H”( U, U \ 
n; 72”) = 0. 

Proo$ We have shown in Section 4 that Ext’(M, A) = 0. This fact (see [ 131) is equivalent 
to the vanishing of H’(U, U \ 52; RD) = 0. (We recall that this fact implies the analytic 
continuation property for D-regular functions.) 0 

Another basic result that we need is the cohomological version of the Mittag-Leffler 
theorem, whose proof is standard. 

Theorem 7.3. Let U c RW be an open set. Then 

H’(U. RD) = 0. 

Remark 7.4. This last result does not hold if we consider D-regular or I-regular functions 
of several variables, because Hartog’s phenomenon holds, as we have shown in Theorem 4.6. 
This fact, whose analytic proof is hard to imagine, implies that compact singularities of D- 
regular and I-regular functions can be removed. 

Let 0 be a relatively compact set in an open set U contained in RW. We have the long 
exact sequence 

0 --f H”(U, U \ 6’: 72”) --, H”(U; RD) + H”(U \ R: 72”) 

- H’(U, U \ Q; 72”) --+ H’(U; RD) + ... 

We know that H’(U, U \ R; RD) = 0 and H’ (U; R”) = 0. Then we obtain the following 
isomorphism: 

H’(U, U \ C; 72”) ” 
H”(U \ R; RD) 

HO(U: 72”) 
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Let us consider the following sets: 

199 

R-ii = 1 x = eeixi E RW 1 x0=0 ( 
i=o I 

lRw+= X=&;xiEW, 1 xo>o 1 

i=O I 
[ww-= x= 1 5 ejxjEWIxo<O , 

i=o I 
Definition 7.5. Let R be an open set in Rk and CJ an open set in RW such that R is 
relatively closed in U. Then the right module defined by 

F(L-2) s H’(U, u \ 62; 72”) s HO(U \ n; RD) 
H”(U: RD) 

is called the module of (left) RW-hyperfunctions. 

Remark 7.6. Proposition 7.2 and Theorem 7.3 imply that the definition is well defined and 
does not depend on the open set U. 

Theorem 7.7. The correspondence 

a - F(Q) 

for any open set G? c RW defines ajlubby sheafon [WM. 

A simple interpretation of the elements in F(0) can be given in view of the following 
result. 

Theorem 7.8 (Painlevk). Let R be a set in RW for which there exists a null-convex open 
set U in BIH such that Q is relatively closed in U. Let F E RD(U \ Q) and suppose that 
F is continuous in all qf U. Then F belongs to ‘R”(U), i.e. F deJms the zero element in 

H’(U. U \ 62’; R”). 

Prooj: As in the classical case, this follows from the application of the Cauchy formula. 
0 

Example. Let F E R”(RW+). The function 

F+ zz F on lRW+. 
0 0nRW 
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belongs to R”(LWW \ &U) and defines an element [F+] in F([wW) that represents the 
boundary value of F’. Analogously, if F E RD(RW-) and 

then [F-l E F(W). If F E R(RW\@H), we can write (with obvious meaning of symbols 

[F] = [F+] + [r’-1. 

Remark 7.9. Since a hyperfunction describes the boundary values of two D-regular func- 
tions, i.e. of two electromagnetic fields, in our case we have a description of a phenomenon 
that occurs to electromagnetic fields along a hyperplane of the Minkowski space-time. 
Suppose that the hyperplane is a nonlinear material which strongly interacts with electro- 
magnetic fields. For example, we can think of a plasma with a particular distribution of 
momenta or of nonlinear dielectrics. Let us suppose that electromagnetic waves propagate 
through the hyperplane. Then the hyperfunctions represents the behavior of the fields on 
the hyperplane. 
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